Series PAVC
Variable Displacement
Piston Pumps

Catalog HY28-2662-CD/US
Quick Reference Data Chart

<table>
<thead>
<tr>
<th>Pump Model</th>
<th>Displacement CM³/REV (IN³/REV)</th>
<th>Pump Delivery @ 21 bar (300 PSI) in LPM (GPM)</th>
<th>*Approx. Noise Levels dB(A) @ Full Flow 1800 RPM (1200 RPM)</th>
<th>Input Power At 1800 RPM, Maximum Displacement & 207 bar (3000 PSI)</th>
<th>Operating Speed RPM (Maximum)</th>
<th>Pressure bar (PSI) Continuous (Maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVC33</td>
<td>33 (2.0)</td>
<td>39.4 (10.4)</td>
<td>75 (69) 76 (72) 78 (75) 79 (77)</td>
<td>21.3 kw (28.5 hp)</td>
<td>3000</td>
<td>207 (3000)</td>
</tr>
<tr>
<td>PAVC38</td>
<td>38 (2.3)</td>
<td>45.0 (11.9)</td>
<td>75 (69) 76 (72) 78 (75) 79 (77)</td>
<td>24.6 kw (33.0 hp)</td>
<td>3000</td>
<td>207 (3000)</td>
</tr>
<tr>
<td>PAVC65</td>
<td>65 (4.0)</td>
<td>78.7 (20.8)</td>
<td>77 (75) 78 (76) 80 (78) 81 (79)</td>
<td>43.1 kw (57.8 hp)</td>
<td>3000</td>
<td>207 (3000)</td>
</tr>
<tr>
<td>PAVC100</td>
<td>100 (6.1)</td>
<td>119.6 (31.6)</td>
<td>83 (77) 82 (78) 82 (79) 85 (80)</td>
<td>71.2 kw (95.5 hp)</td>
<td>2600</td>
<td>207 (3000)</td>
</tr>
</tbody>
</table>

* Since many variables such as mounting, tank style, plant layout, etc., effect noise levels, it cannot be assumed that the above readings will be equal to those in the field. The above values are for guidance in selecting the proper pump. Noise levels are A-weighted, mean sound pressure levels at 1 meter from the pump, measured and recorded in accordance with applicable ISO and NFPA standards.
Introduction Series PAVC

Features
- High Strength Cast-Iron Housing
- Built-In Supercharger Ensures High Speed Capability - 3000 RPM (2600 RPM PAVC100)
- Sealed Shaft Bearing
- Two Piece Design for Ease of Service
- Cartridge Type Controls - Field Changeable
- Replaceable Bronze Clad Port Plate
- Airbleed Standard for Quick Priming
- Hydrodynamic Cylinder Barrel Bearing
- Thru-Shaft (PAVC100 Only)
- Full Pressure Rating on Most Water Glycol Fluids
- Pump Case and Shaft Seal are Subjected to Inlet Pressure Only
- Filter and/or Cool Drain Line
 7 bar (100 PSI) Maximum

Controls
- Pressure Compensation
- Load Sensing
- Power (Torque) Limiting
- Power and Load Sensing
- Remote Pressure Compensation
- Adjustable Maximum Volume Stop
- Electrohydraulic Flow and Pressure
- Low Pressure Standby
General Description

All control is achieved by the proper positioning of the swash plate. This is achieved by a servo piston acting on one end of the swash plate working against the combined effect of the off-setting forces of the pistons and centering spring on the other end. The control spool acts as a metering valve which varies the pressure behind the servo piston.

As shown in Figure 1, the amount of flow produced by the Parker Piston Pump is dependent upon the length of stroke of the pumping pistons. This length of stroke, in turn, is determined by the position of the swash plate. Maximum flow is achieved at an angle of 17°.

The rotating piston barrel, driven by the prime mover, moves the pistons in a circular path and the piston slippers are supported hydrostatically against the face of the swash plate. When the swash plate is in a vertical position, perpendicular to the centerline of the piston barrel, there is no piston stroke and consequently no fluid displacement. When the swash plate is positioned at an angle, the pistons are forced in and out of the barrel and fluid displacement takes place. The greater the angle of the swash plate, the greater the piston stroke.

The centerline of the pumping piston assembly is offset from the centerline of the swash plate. Therefore, as shown on the accompanying Figure 1A, the pistons' effective summation force tends to destroke the swash plate to a vertical (neutral) position. This destroking force is balanced as the swash plate is angled by the force of the servo piston.
Pressure Compensated Control

Swash plate angle controls the output flow of the pump. Swash plate angle is controlled by the force generated against the swash plate by the pumping pistons and by the force of the servo piston. The force of the servo piston is greater than the force of the pumping pistons when both are at the same pressure.

By means of internal porting, pressure is connected from the output port to the servo piston via orifice (E), and to the control spool via passage (D). Also pressure is applied to the control spool chamber thru orifice (F). As long as the pressures at both ends of the control spool remain equal, the spool will remain offset upward, due to the added force of the spring.

When pressure reaches the setting of the compensator control, the dart leaves its seat causing the pressure in the spool chamber to be reduced. The spool now moves downward causing pressure in the servo piston cavity to vent via port “A”. The reduced pressure at the servo piston allows the servo piston to move to the right. This movement reduces the angle of the swash plate and thereby reduces the pumps output flow.

As pump pressure on the control spool drops below pressure and spring force in the spool chamber, the control spool moves upward to maintain an equilibrium on both sides of the spool. If pump pressure falls below compensator control setting, the control spool moves up, bringing the pump to maximum displacement.

ΔP Adjustment of PAVC Pumps

PROCEDURE:

a. Standard Pressure Compensated Pump

Pumps are shipped from factory with a differential pressure of approximately 150 PSI (10 bar) on PAVC 33/38/65, PAVC 100 is 300 PSI (21 bar) at 50% of maximum swash angle. Differential pressure will not normally change through the life of the pump. If this control has been tampered with, a close approximation of the correct setting can be made as follows:

Dead head the pump (no flow) with a 0-207 bar (0-3000 PSI) gauge in the OUTLET (not the low signal “B” port), back the pressure compensator adjustment out (full counterclockwise).

The gauge should read between 22-26 bar (325-375 PSI) PAVC 33, 38 & 65, 34-40 bar (500-575 PSI) PAVC 100. If the gauge reads different than this, turn the differential adjustment knob (Differential Option 4) or add/remove shims (Omit Option) until correct pressure figure is reached.
Remote Pressure Control

Control Type (M)
Remote control of the PAVC output pressure can be achieved by controlling the pressure in the low signal “B” port when the pump is set up for Control Type (M). A manual, hydraulically piloted, electrical or electro-proportionally controlled pressure control device is installed in the line from the low signal “B” port to tank. The pump will then maintain pressure approximately equal to the pressure in the “B” port plus the pump differential setting.

Low Pressure Standby
This option can be used as an alternative to the load sensing option (A) to achieve low pressure standby. Minimum standby pressure is somewhat higher than that achieved using option (A). In the compensating mode there is approximately 1.1 LPM (.3 GPM) flow from the low signal “B” port in addition to 3.4 LPM (.9 GPM) flow from the control drain port “A”.

Multiple Pressure Standby
If the pressure level in the low signal “B” port is limited by a relief valve, as the desired pump outlet pressure is reached, the relief valve in the “B” port will allow the pump to standby at a preset pressure. Adding to this concept, multiple, remotely piloted relief valves plumbed in parallel in the “B” port line can yield multiple, sequential pressure settings.

Electrohydraulic Pressure & Flow Control
A proportional pressure control valve can be used in place of relief valves to give variable pressure control proportional to an electrical input signal to the valve. By combining this arrangement with a swash plate position sensing device, amplifier, and logic circuit, servo control of pressure and/or flow is achieved. NOTE: In most systems, a load equivalent to the minimum operating pressure of the pump cannot be guaranteed. Because of this, a sequence valve is required in the discharge line to maintain servo flow control. Please refer to ordering information section for servo components.
Pressure & Flow Control (Load Sensing)

Control Type (A)

Flow control is achieved by placing an orifice (fixed or adjustable) in the pump outlet port. The pressure drop (ΔP) across this flow control is the governing signal that controls the pump’s output, as explained below.

Whenever the pressure drop at the flow control increases (indicating an increase in output flow), the pump attempts to compensate by decreasing the output flow. It does this by sensing the lower pressure on the downstream side of the flow control via line (C), which is balanced against the pump pressure via passage (D), on the control spool. The control spool is forced down against the control spool spring by differential pressure. This vents the servo piston cavity, destroking the pump to a point where the set pressure drop across the orifice is maintained and the flow is obtained.

The converse of this is also true whenever the pressure drop decreases (indicating a decrease in output flow). In this case, the control spool is forced up. This increases pump displacement in an attempt to maintain the predetermined pressure drop or constant flow.

It should be noted that the pump is still pressure compensated and destrokes at the selected pressure setting. The pressure compensator control will override the flow control whenever the pressure compensator control setting is reached.

Low Pressure Standby

This arrangement can also be used to provide low pressure standby by venting the “B” port through a simple on/off valve suitable for flows of 3.8-7.6 LPM (1-2 GPM). When flow or pressure is required, this valve is closed allowing system pressure to build behind the control spool and bringing the pump on-stroke.

Load Sensing

If, instead of measuring the pressure drop across the orifice in the pump outlet port, it is measured downstream of a directional control valve, a constant pressure drop will be maintained across the valve spool. This results in a constant flow for any given opening of the directional control valve regardless of the work load downstream or the operating speed of the pump.

The pump “senses” the amount of pressure necessary to move the load and adjusts output flow to match the valve opening selected and pressure to overcome the load plus the preset ΔP across the valve spool.

The benefits of this arrangement are that excellent, repeatable flow characteristics are achieved, and considerable energy savings are realized while metering, compared to using a straight pressure compensated system.
Pressure & Power (Torque) Control
Control Type (H)

The power control is sensitive to the position of the servo piston. When the servo piston is to the right, the swash plate causes low flow and the power control piston develops maximum spring pressure on its companion poppet (mechanical feedback). When the servo piston is left and the flow is high, the power control piston reduces spring pressure on the poppet. This allows it to open under less pressure in the control spool chamber, thereby venting some of the pressure in the control spool chamber. As with the operation of the pressure compensator control, this allows the control spool to move downward, venting the servo piston cavity and causing the servo piston to move to the right. This reduces output flow and thereby power.

As indicated in the pictorial drawing, pressure in the control spool chamber is affected by both the pressure compensator control and the power control. The resultant pressure in this chamber is a function of the set points of these two controls. Both set points are adjustable.
How to read input power control curve data.

1. Power “A” curve corresponds to flow “A” curve. This represents a particular setting of the power (torque) control.

2. With this setting the maximum power required will be as shown at the apex (maximum point) of the power curve.

3. The flow at this setting will follow the flow vs. pressure curve shown.

4. Example – 1800 RPM, curve labeled “C”:
 A. Flow will follow curve “C” and pump will deadhead at 190 bar (2750 PSI).
 B. Full flow will not be realized above 83 bar (1200 PSI).
 C. Flow at 103 bar (1500 PSI) will be approximately 48.1 LPM (12.7 GPM).
 D. Maximum power [11 KW (15 HP)] occurs at approximately 117 bar (1700 PSI).

5. Torque values are shown to correspond to powers at speed shown.
Pressure, Power & Flow Control

Control Type (C)

In addition to the three control configurations just discussed, it is possible to combine all three control devices in one pump. In this mode, the position of the control spool is a function of the actions of the pressure compensator adjustment, power adjustment, and flow control.
Performance Information
Series PAVC 33/38 Pressure Compensated, Variable Volume, Piston Pumps

Features
- High Strength Cast-Iron Housing
- Built-In Supercharger
- High Speed Capability – 3000 RPM
- Two Piece Design for Ease of Service
- Cartridge Type Controls – Field Changeable
- Replaceable Bronze Clad Port Plate
- Airbleed Standard for Quick Priming
- Hydrodynamic Cylinder Barrel Bearing
- Full Pressure Rating on Water Glycol Fluids
- Filtered and/or Cooled Drain Line Capable
- 7 bar (100 PSI) Maximum

Controls
- Pressure Compensation
- Remote Pressure Compensation
- Load Sensing
- Power (Torque) Limiting
- Power Limiting and Load Sensing
- Adjustable Maximum Volume Stop
- Electrohydraulic Flow and Pressure
- Low Pressure Standby

Schematic Symbol
(Basic Pump)

Technical Information Series PAVC 33/38

Specifications
Pressure Ratings:
Outlet Port: 207 bar (3000 PSI) Continuous (P1)
248 bar (3600 PSI) Peak (P3)
Inlet Port: 1.72 bar (25 PSI) Maximum
0.17 bar (5 In. Hg.) Minimum
@ 1800 RPM (See Inlet Chart for other speeds)
Control Drain: 7 bar (100 PSI) Maximum
Speed Ratings: 600 to 3000 RPM
Operating Temperature Range: −40°C to 71°C
(−40°F to 160°F)
Housing Material: Cast-Iron
Filtration: Maintain SAE Class 4, ISO 16/13,
ISO 18/15 Maximum Recommended
Mounting: SAE B 2-Bolt Flange Mount or Diagonally
on SAE B 4-Bolt Flange Mount.

Installation Data: See page 46 of this catalog for
specific recommendations pertaining to system
cleanliness, fluids, start-up, inlet conditions, shaft
alignment, drain line restrictions and other important
factors relative to the proper installation and use of
these pumps.

Quick Reference Data Chart

<table>
<thead>
<tr>
<th>Pump Model</th>
<th>Displacement CM³/REV (IN³/REV)</th>
<th>Pump Delivery @ 21 bar (300 PSI) in LPM (GPM)</th>
<th>*Approximate Noise Levels dB(A) @ Full Flow 1800 RPM (1200 RPM)</th>
<th>Input Power At 1800 RPM, Max. Displacement & 207 bar (3000 PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVC33</td>
<td>33 (2.0)</td>
<td>1200 RPM: 39.4 (10.4) 59.0 (15.6)</td>
<td>75 (69) 76 (72) 78 (75) 79 (77)</td>
<td>21.3 kw (28.5 hp)</td>
</tr>
<tr>
<td>PAVC38</td>
<td>38 (2.3)</td>
<td>1800 RPM: 45.0 (11.9) 67.8 (17.9)</td>
<td>75 (69) 76 (72) 78 (75) 79 (77)</td>
<td>24.6 kw (33.0 hp)</td>
</tr>
</tbody>
</table>

* Since many variables such as mounting, tank style, plant layout, etc., effect noise levels, it cannot be assumed that the above readings will be equal to those in
the field. The above values are for guidance in selecting the proper pump. Noise levels are A-weighted, mean sound pressure levels at 1 meter from the pump,
measured and recorded in accordance with applicable ISO and NFPA standards.
Variable Displacement Piston Pumps
Ordering Information

Series PAVC 33/38

Code: Multiple Pumps
- **Omit**: Single Pump
- **—**: Factory Mounted to Rear of Another Pump

Code: CM³/REV (In³/Rev.)
- **33**: 33 (2.0)
- **38**: 38 (2.3)

Code: Bearing Option
- **Omit**: Single Piece Shaft
- **9**: Dual Bearing

* For applications where side loading may be experienced. Max. side load = 104 kg (230 lbs).

Typical Applications:
- Belt/chain drive
- Universal joint drive
- Massive couplings
- Foot mount installations

Code: Shaft Option
- **Omit**: 7/8" Keyed (SAE B)
- **B**: 13T Spline (SAE B)
- **S**: 7/8" Keyed, Short Shaft (SAE B)

* Not available with Bearing Option 9.

Code: Inlet Location Type
- **Omit**: Str. Thd. Rear SAE/Inch Threads
- **2**: Flange Side SAE/Inch Threads
- **8**: Flange Side ISO 6149/Metric

Code: Control Options
- **Omit**: Standard Pressure Compensated Setting Pressure 28-207 bar (400-3000 PSI)
- **A**: Pressure & Flow (Load Sensing)
- **C**: Pressure, Flow & Power (Torque) Limiting
- **H**: Pressure & Power (Torque) Limiting
- **M**: Remote Pressure
- **ME**: Remote Pressure (Requires external pilot)
- **S**: Servo Pressure & Volume (Requires PPC, Amplifier & Seq. Valve)
- **SE**: Servo Pressure & Volume (Requires PPC, Amplifier & Seq. Valve)
- **AM**: Remote Pressure & Flow
- **CM**: Remote Pressure, Flow & Power
- **HM**: Remote Pressure & Power

* Power controlled pumps (H, C, HM or CM) must have maximum input power limit specification at a particular drive speed (RPM), and compensator pressure (PSI) included with order. Power controlled pumps that do not have input power limit specifications, will be set at a default setting.

(7.5 HP @ 1800 RPM and 1000 PSI) "H" & "C"
(20 HP @ 1800 RPM and 3000 PSI) "HM" & "CM"
** "M" (May be remotely controlled)
** ME (Requires external pilot)

† Pumps with M, ME, S, SE, AM, CM or HM controls will be set to compensate at 207 bar (3000 PSI) unless Chart #1 otherwise specifies.

Ordering Notes

Unless otherwise specified, pump is shipped at maximum GPM (1800 RPM) and set to 69 bar (1000 PSI) [See † Exceptions]. When factory settings are required, the items shown in Chart #1 must be included with order.

Chart #1
<table>
<thead>
<tr>
<th>Item</th>
<th>RPM</th>
<th>PSI</th>
<th>HP</th>
<th>GPM</th>
</tr>
</thead>
</table>
Typical Performance Data - Fluid: Standard Hydraulic Oil 100 SSU @ 49°C (120°F)

NOTE: The efficiencies and data in the graph are good only for pumps running at 1800 RPM and stroked to maximum. To calculate approximate input power for the other conditions, use the following formula:

$$\text{HP} = \left[\frac{Q \times \text{PSI}}{1714} \right] + \text{CHp}$$

WHERE:

- Q = Actual Output Flow in GPM
- PSI = Pressure At Pump Outlet
- CHp = Input Power @ Full Compensation @ 1800 RPM (from graph read at operating pressure)

Actual GPM is directly proportional to drive speed and maximum volume setting. Flow loss, however, is a function of pressure only.

Inlet Characteristics at Full Displacement (Graph only valid at sea level)

Compensated Control Drain Flow @ 1800 RPM

NOTE: DO NOT OPERATE IN THIS REGION
NOTE: Minimum attainable HP setting means that input power will not exceed the indicated setting at the indicated RPM and that the pump will achieve full compensator pressure selected. If setting input power limiter below full flow boundary, full flow may not be obtained at low operating pressure.

Determine maximum input power limitation at desired RPM. All points above desired compensator setting curve can be achieved.

See page 9 for “How to Read Curves” information.
Typical Performance Data -

Minimum Power Settings Attainable
With Control Options C, H, CM & HM

NOTE: Minimum attainable HP setting means that input horsepower will not exceed the indicated setting at the indicated RPM and that the pump will achieve full compensator pressure selected. If setting input power limiter below full flow boundary, full flow may not be obtained at low operating pressure.

Determine maximum input power limitation at desired RPM. All points above desired compensator setting curve can be achieved.

Power (Torque) Limiting Curves

See page 9 for “How to Read Curves” information.
Rear Ported Pump Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTE:

1. Pump shown and dimensioned is a clockwise rotation pump. Outlet port, A and B ports, and controls will be on opposite side for a counterclockwise rotation pump.
Variable Displacement Piston Pumps
Series PAVC 33/38

Side Ported – Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTE:

1. Shown and dimensioned is a clockwise pump. Ports A and B, delivery port and pump controls will be on the opposite side for a counterclockwise pump.

Port Location

<table>
<thead>
<tr>
<th>Option</th>
<th>Outlet Port</th>
<th>Inlet Port</th>
<th>Control Drain</th>
<th>Signal Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SAE-12</td>
<td>1-1/4 SAE 4-Bolt Flange (7/16-14UNC)</td>
<td>SAE-4</td>
<td>SAE-4</td>
</tr>
<tr>
<td></td>
<td>Straight Thread</td>
<td>Standard Pressure Series (Code 61)</td>
<td>Straight Thread</td>
<td>Straight Thread (7/16-20UNF)</td>
</tr>
<tr>
<td>8</td>
<td>ISO 6149-12</td>
<td>1-1/4 SAE 4-Bolt Flange M10 x 1.5 Threads Standard Pressure Series (Code 61)</td>
<td>ISO 6149-4</td>
<td>ISO 6149-4</td>
</tr>
<tr>
<td></td>
<td>Straight Thread (M27 x 2)</td>
<td>Straight Thread (M12 x 1.5)</td>
<td>Straight Thread</td>
<td>Straight Thread (M12 x 1.5)</td>
</tr>
</tbody>
</table>

Shaft Option

- **“OMIT”**
 - SAE “B” SHAFT
 - 7/8” KEYED
 - MAX. TORQUE = 209 N·m (1,850 IN-LBS)

Control Drain Port A

SEE CHART FOR SIZE

Signal Port B

SEE CHART FOR SIZE

Torque Control Adjustment:

56 N·m (500 IN-LBS) PER TURN

Pressure Compensator Adjustment:

55 BAR (800 PSI) PER TURN

Adjustable Differential Option “4”

SENSITIVITY:

13.8 BAR (200 PSI) PER TURN

Shaft Option “S”

SAE “B” SHORT SHAFT

7/8” KEYED

MAX. TORQUE = 209 N·m (1,850 IN-LBS)

MAX. VOLUME STOP

OPTION “2”

2.2 CC/REV/TURN (PAVC33)

2.5 CC/REV/TURN (PAVC38)

Shaft Option “B”

SAE “B” SPLIT SHAFT

13 TOOTH

16/32 PITCH

MAX. TORQUE = 209 N·m (1,850 IN-LBS)

MAX. VOLUME STOP

OPTION “5”

2.5 CC/REV/TURN (PAVC33)

2.8 CC/REV/TURN (PAVC38)
Electrohydraulic Pump Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTES:

1. Consult factory for information relative to pump option selection and additional components required for desired pump function.
2. For electrohydraulic flow and pressure control of one or two pumps, make electrical connections per Figure IV. When one pump is used, omit connections to pump #2 feedback.
3. For electrohydraulic flow only, eliminate pressure command signal and place jumper between “Press CMD” and “+10V” terminals (compensating pressure will be controlled by maximum setting on pump or remote compensator if used).
4. For electrohydraulic pressure only, eliminate volume command signal and place jumper between “VOL CMD” and “+10V” terminals or use 801179 pressure driver card.
5. Figures I thru III show nominal input vs. output relationships. The actual values will vary with component tolerances. Full volume range will be realized with 0 to 7 volts. Full pressure range will be realized with 0 to 7 volts, or 0-500MA.
6. Pump shown is a clockwise rotation. For a counterclockwise rotation LVDT feedback is on opposite side.
7. For further detail on installation of AP11/AP211, refer to the latest edition of Catalog 2600-400-x/US.

Accessories for S & SE Options

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC Valve (2500 PSI)</td>
<td>694586</td>
</tr>
<tr>
<td>PPC Valve (3000 PSI)</td>
<td>786645</td>
</tr>
<tr>
<td>Amp Single Pump</td>
<td>AP11</td>
</tr>
<tr>
<td>Amp Double Pump</td>
<td>AP211</td>
</tr>
<tr>
<td>Seq. Valve [150 LPM (40 GPM) Max.]</td>
<td>SX6PM8, SX6MM8 (Inline) (Manifold)</td>
</tr>
<tr>
<td>Electrohydraulic Cable [Pump to Amp]</td>
<td>EHC*4Y</td>
</tr>
<tr>
<td>Electrohydraulic Cable [PPC to Amp]</td>
<td>EHC*2AB</td>
</tr>
</tbody>
</table>

Typical Hookup for Infinitely Variable Electrohydraulic Pressure & Volume Control.

Fig. IV
Performance Information
Series PAVC65 Pressure Compensated, Variable Volume, Piston Pump

Features
- High Strength Cast-Iron Housing
- Built-In Supercharger
- High Speed Capability - 3000 RPM
- Two Piece Housing for Ease of Service
- Cartridge Type Controls - Field Changeable
- Replaceable Bronze Clad Port Plate
- Airbleed Standard for Quick Priming
- Hydrodynamic Cylinder Barrel Bearing
- Full Pressure Rating on Water Glycol Fluids
- Filtered and/or Cooled Drain Line Capable - 7 bar (100 PSI) Maximum

Controls
- Pressure Compensation
- Remote Pressure Compensation
- Load Sensing
- Power (Torque) Limiting
- Power Limiting and Load Sensing
- Adjustable Maximum Volume Stop
- Electrohydraulic Pressure
- Electrohydraulic Flow and Pressure (Servo Control)
- Low Pressure Standby

Schematic Symbol
(Basic Pump)

Specifications
Pressure Ratings:
Outlet Port: 207 bar (3000 PSI) Continuous (P1)
248 bar (3600 PSI) Peak (P3)
Inlet Port: 1.7 bar (25 PSI) Maximum
0.17 bar (5 In. Hg.) Minimum @ 1800 RPM (See Inlet Chart for other speeds)
Control Drain: 7 bar (100 PSI) Maximum
Speed Ratings: 600 to 3000 RPM*
* See Inlet Characteristics Chart on page A155 and consider using Dual Inlet Port configuration on page A178 for applications above 2700 RPM.
Operating Temperature Range: – 40°C to 71°C
(– 40°F to 160°F)
Housing Material: Cast-Iron
Filtration: Maintain SAE Class 4, ISO 16/13, ISO 18/15 Maximum Recommended
Mounting: SAE C 2-Bolt Flange Mount or Diagonally on SAE C 4-Bolt Flange Mount
Installation Data: See page 46 of this catalog for specific recommendations pertaining to system cleanliness, fluids, start-up, inlet conditions, shaft alignment, drain line restrictions and other important factors relative to the proper installation and use of these pumps.

Quick Reference Data Chart

<table>
<thead>
<tr>
<th>Pump Model</th>
<th>Displacement CM³/REV (IN³/REV)</th>
<th>Pump Delivery @ 21 bar (300 PSI) in LPM (GPM)</th>
<th>*Approximate Noise Levels dB(A) @ Full Flow 1800 RPM (1200 RPM)</th>
<th>Input Power At 1800 RPM, Max. Displacement & 207 bar (3000 PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVC65</td>
<td>65 (4.0)</td>
<td>1200 RPM 1800 RPM 34 bar (500 PSI) 69 bar (1000 PSI) 138 bar (2000 PSI) 207 bar (3000 PSI)</td>
<td>77 (75) 78 (76) 80 (78) 81 (79) 43.1 kw (57.8 hp)</td>
<td></td>
</tr>
</tbody>
</table>

* Since many variables such as mounting, tank style, plant layout, etc., affect noise levels, it cannot be assumed that the above readings will be equal to those in the field. The above values are for guidance in selecting the proper pump. Noise levels are A-weighted, mean sound pressure levels at 1 meter from the pump, measured and recorded in accordance with applicable ISO and NFPA standards.
Variable Displacement Piston Pumps

Series PAVC65

Ordering Information

Code	Multiple Pumps
Omit | Single Pump
— | Factory Mounted to Rear of Another Pump

Code	Bearing Option
Omit | Single Piece Shaft
9* | Dual Bearing

* For applications where side loading may be experienced. Max. side load = 192.8 kg (425 lbs).

Typical Applications:
Belt/chain drive
Universal joint drive
Massive couplings
Foot mount installations

Code	Shaft Option
Omit | 1-1/4" Keyed (SAE C)
B | 14T Spline (SAE C)

Code	Port
Outlet | Location
Omit | Str. Thd.
2 | Flange
8 | Flange

Code	Paint
Omit | No Paint
P | Paint

Code	Seals
Omit | Nitrile (Standard)

Ordering Notes

Unless otherwise specified, pump is shipped at maximum GPM (1800 RPM) and set to 69 bar (1000 PSI) [See † Exceptions]. When factory settings are required, the items shown in Chart #1 must be included with order.

Chart #1

| Item | RPM | PSI | HP | GPM |

Code	Rotation*
R | Right (CW)
L | Left (CCW)

* Viewed from shaft end.

Code	Differential Options
Omit | Non-Adjustable Differential
4 | Adjustable Differential

Code	Volume Stop Options
Omit | Volume Stop Plugged
2 | Maximum Volume Stop
5 | Max. Vol. Stop With O-Ring

Code	Control Options
Omit | Standard Pressure Compensated Setting Pressure 28-207 bar (400-3000 PSI)
A | Pressure & Flow (Load Sensing)
*C | Pressure, Flow & Power
*H | Pressure Compensated & Power
**†M | Remote Pressure
**†ME | Remote Pressure Servo Pressure & Volume (Requires PPC, Amplifier & Seq. Valve)
**†AM | Remote Pressure & Flow Servo Pressure & Volume (Requires PPC, Amplifier & Seq. Valve)
**†HM | Remote Pressure & Power Servo Pressure & Volume (Requires PPC, Amplifier & Seq. Valve)

* Power controlled pumps (H, C, HM or CM) must have maximum input power limit specification at a particular drive speed (RPM) and compensator pressure setting (PSI) included with order. Power controlled pumps that do not have input power limit specifications, will be set at a default setting. (15 HP @ 1800 RPM and 1000 PSI) "H" & "C"
(40 HP @ 1800 RPM and 3000 PSI) "HM" & "CM"
** "M" (May be remotely controlled)
ME (Requires external pilot)† Pumps with M, ME, AM, CM or HM controls will be set to compensate at 207 bar (3000 PSI) unless Chart #1 otherwise specifies.

†Pumps with M, ME, AM, CM or HM controls will be set to compensate at 207 bar (3000 PSI) unless Chart #1 otherwise specifies.
Typical Performance Data - Fluid: Standard Hydraulic Oil 100 SSU @ 49°C (120°F)

![Graphs showing performance data for PAVC65 pumps at 1200 and 1800 RPM](image)

NOTE: The efficiencies and data in the graph are good only for pumps running at 1800 RPM and stroked to maximum. To calculate approximate input power for the other conditions, use the following formula:

\[
HP = \frac{Q \times (PSI)}{1714} + (CHp)
\]

Where:
- \(Q\) = Actual Output Flow in GPM
- \(PSI\) = Pressure At Pump Outlet
- \(CHp\) = Input Power @ Full Compensation @ 1800 RPM (from graph read at operating pressure)

Actual GPM is directly proportional to drive speed and maximum volume setting. Flow loss, however, is a function of pressure only.

![Inlet Characteristics at Full Displacement](image)

![Compensated Control Drain Flow @ 1800 RPM](image)
Typical Performance Data -

Minimum Power Settings Attainable
With Control Options C, H, CM & HM

PAVC65

- 207 bar (3000 PSI) Comp. Setting
- 172 bar (2500 PSI) Comp. Setting
- 138 bar (2000 PSI) Comp. Setting
- 103 bar (1500 PSI) Comp. Setting
- 69 bar (1000 PSI) Comp. Setting

NOTE: Minimum attainable HP setting means that input power will not exceed the indicated setting at the indicated RPM and that the pump will achieve full compensator pressure selected. If setting input power limiter below full flow boundary, full flow may not be obtained at low operating pressure.

Determine maximum input power limitation at desired RPM. All points above desired compensator setting curve can be achieved.

Power (Torque) Limiting Curves

See page 9 for “How to Read Curves” information.
Dimensions – Rear Port

* Inch equivalents for millimeter dimensions are shown in (**).

NOTES:
1. Pump shown and dimensioned is a clockwise rotation pump. Outlet port, A and B ports, and controls will be on opposite side for a counterclockwise rotation pump.
2. Pump mounting and shaft comply with SAE “C” dimensions.
Variable Displacement Piston Pumps
Series PAVC65

Dimensions – Top Port

* Inch equivalents for millimeter dimensions are shown in (**).

NOTES:
1. Pump shown and dimensioned is a clockwise rotation pump. Outlet port, A and B ports, and controls will be on opposite side for a counterclockwise pump.
2. Pump mounting and shaft comply with SAE “C” dimensions.

<table>
<thead>
<tr>
<th>Option</th>
<th>Outlet Port</th>
<th>Inlet Port</th>
<th>Control Drain</th>
<th>Signal Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SAE-16</td>
<td>1-1/2 SAE 4-Bolt Flange (1/2-13UNC Threads Standard Pressure Series (Code 61))</td>
<td>SAE-6</td>
<td>SAE-4</td>
</tr>
<tr>
<td>8</td>
<td>ISO 6149-16 Straight Thread (M33 x 2)</td>
<td>1-1/2 SAE 4-Bolt Flange M12 x 1.75 Threads Standard Pressure Series (Code 61)</td>
<td>ISO 6149-5</td>
<td>ISO 6149-4</td>
</tr>
</tbody>
</table>

Options and Specifications:
- **Option “2”**
 - SAE-16
 - 1-1/2 SAE 4-Bolt Flange (1/2-13UNC Threads Standard Pressure Series (Code 61))
 - Max. Torque = 641 N·m (5,680 IN-LBS)
- **Option “8”**
 - ISO 6149-16
 - M12 x 1.75 Threads Standard Pressure Series (Code 61)
 - Max. Torque = 641 N·m (5,680 IN-LBS)

Control Drain Port
- SAE-16
- 1-1/2 SAE 4-Bolt Flange
- Max. Torque = 641 N·m (5,680 IN-LBS)

Shaft Option
- **Option “Omit”**
 - SAE “C” Shaft
 - 1-1/4" Keyed
 - Max. Torque = 641 N·m (5,680 IN-LBS)

Shaft Option “B”
- 14 Tooth SAE “C” Spline 12/24 Pitch
- Max. Torque = 641 N·m (5,680 IN-LBS)

Option “8”
- ISO 6149-4
- Adapter Fitting on Option “8”

Option “2”
- Volume Stop Sensitivity: 3.8 CC/REV/TURN

Option “5”
- Volume Stop Sensitivity: 4.2 CC/REV/TURN

Option “4”
- Adjustable Differential
 - Sensitivity: 13.8 BAR (200 PSI) PER TURN

Shaft Option “2”
- 14 Tooth SAE “C” Spline 12/24 Pitch
- Max. Torque = 641 N·m (5,680 IN-LBS)

Shaft Option “Omit”
- SAE “C” Shaft
- 1-1/4" Keyed
- Max. Torque = 641 N·m (5,680 IN-LBS)

Adjustable Differential
- Sensitivity: 13.8 BAR (200 PSI) PER TURN

Torque Control Adjustment
- Sensitivity: 90 N·m (800 IN-LBS) PER TURN

Pressure Compensator Adjustment
- Sensitivity: 55 BAR (800 PSI) PER TURN

Clearance for .625 Dia. Mounting Bolts. SAE “C” 2-Bolt Pattern

Clearance for .500 Dia. Bolts Mounted Diagonally on SAE “C” 4-Bolt Pattern

Dimensional Data Series PAVC65

Notes:
1. Pump shown and dimensioned is a clockwise rotation pump. Outlet port, A and B ports, and controls will be on opposite side for a counterclockwise pump.
2. Pump mounting and shaft comply with SAE “C” dimensions.
Variables Displacement Piston Pumps

Dimensions – Electrohydraulic Pump

* Inch equivalents for millimeter dimensions are shown in (**).

NOTES:

1. Consult factory for information relative to pump option selection and additional components required for desired pump function.
2. For electrohydraulic flow and pressure control of one or two pumps, make electrical connections per Figure IV. When one pump is used, omit connections to pump #2 feedback.
3. For electrohydraulic flow only, eliminate pressure command signal and place jumper between “Press CMD” and “+10V” terminals (compensating pressure will be controlled by maximum setting on pump or remote compensator if used).
4. For electrohydraulic pressure only, eliminate volume command signal, and place jumper between “VOL CMD” and “+10V” terminals or use 801179 pressure driver card.
5. Figures I thru III show nominal input vs. output relationships. The actual values will vary with component tolerances. Full volume range will be realized with 0 to 7 volts. Full pressure range will be realized with 0 to 7 volts, or 0-500MA.
6. Pump shown is a clockwise rotation. For a counterclockwise rotation LVDT feedback is on opposite side.
7. For further detail on installation of AP11/AP211, refer to the latest edition of Catalog 2600-400-x/US.

Typical Hookup for Infinitely Variable Electrohydraulic Pressure & Volume Control.

Fig. IV

Accessories for S & SE Options

<table>
<thead>
<tr>
<th>Component</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC Valve (2500 PSI)</td>
<td>694586</td>
</tr>
<tr>
<td>PPC Valve (3000 PSI)</td>
<td>786645</td>
</tr>
<tr>
<td>Amp Single Pump</td>
<td>AP11</td>
</tr>
<tr>
<td>Amp Double Pump</td>
<td>AP211</td>
</tr>
<tr>
<td>Seq. Valve [150 LPM (40 GPM) Max.]</td>
<td>SX6PM8, SX6MM8 (Inline) (Manifold)</td>
</tr>
<tr>
<td>Seq. Valve [340 LPM (90 GPM) Max.]</td>
<td>SX10PM8, SX10MM8 (Inline) (Manifold)</td>
</tr>
<tr>
<td>Electrohydraulic Cable [Pump to Amp]</td>
<td>EHC*4YB</td>
</tr>
<tr>
<td>Electrohydraulic Cable [PPC to Amp]</td>
<td>EHC*2AB</td>
</tr>
</tbody>
</table>

* = Length in Feet

SHOWN WITH “S” OR “SE” OPTION

Volume Command Voltage

Nominal output flow vs. input command voltage when used in conjunction with AP*11 amplifier and 786645 proportional pressure controller.

Pressure Command Voltage

Nominal output pressure vs. input command voltage when used in conjunction with AP*11 amplifier and 786645 proportional pressure controller.

Input Current (MA)

Nominal input current vs. pressure when used in conjunction with a current source and 786645 proportional pressure controller.
Performance Information
Series PAVC100 Pressure Compensating, Variable Volume, Piston Pump

Features
- High Strength Cast-Iron Housing
- Built-In Supercharger
- High Speed Capability - 2600 RPM
- Cartridge Type Controls - Field Changeable
- Replaceable Bronze Clad Port Plate
- Airbleed Standard for Quick Priming
- Hydrodynamic Cylinder Barrel Bearing
- Full Pressure Rating on Water Glycol Fluids
- Filtered and/or Cooled Drain Line
- Thru-Shaft Capable

Controls
- Pressure Compensation
- Remote Pressure Compensation
- Load Sensing
- Power (Torque) Limiting
- Power Limiting and Load Sensing
- Adjustable Maximum Volume Stop
- Electrohydraulic Pressure
- Electrohydraulic Flow and Pressure
 (Servo Control)
- Low Pressure Standby

Schematic Symbol
(Basic Pump)

Weight and Package Size

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight in Kg (Lb)</th>
<th>Length From Mounting Face in CM (Inches)</th>
<th>Height in CM (Inches)</th>
<th>Width in CM (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVC100</td>
<td>50 (110)</td>
<td>30.73 (12.10)</td>
<td>24.90 (9.82)</td>
<td>21.59 (8.50)</td>
</tr>
</tbody>
</table>

Specifications

Pressure Ratings:
- Outlet Port: 207 bar (3000 PSI) Continuous (P1)
 248 bar (3600 PSI) Peak (P3)
- Inlet Port: 1.7 bar (25 PSI) Maximum
 0.17 bar (5 In. Hg.) Minimum
 @ 1800 RPM (See Inlet Chart for other speeds)
- Control Drain: 7 bar (100 PSI) Maximum
- Speed Ratings: 600 to 2600 RPM
- Operating Temperature Range: –40°C to 71°C
 (–40°F to 160°F)
- Housing Material: Cast-Iron
- Filtration: Maintain SAE Class 4, ISO 16/13,
 ISO 18/15 Maximum Recommended
- Mounting: SAE C 2-Bolt Flange Mount or Diagonally
 on SAE C 4-Bolt Flange Mount

Installation Data: See page 46 of this catalog for specific recommendations pertaining to system cleanliness, fluids, start-up, inlet conditions, shaft alignment, drain line restrictions and other important factors relative to the proper installation and use of these pumps.

Quick Reference Data Chart

<table>
<thead>
<tr>
<th>Pump Model</th>
<th>Displacement CM³/REV (IN³/REV)</th>
<th>Pump Delivery @ 21 bar (300 PSI) in LPM (GPM) @ 1200 RPM</th>
<th>Pump Delivery @ Full Flow 1800 RPM (1200 RPM)</th>
<th>*Approximate Noise Levels dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVC100</td>
<td>100 (6.1)</td>
<td>119.6 (31.6)</td>
<td>179.8 (47.5)</td>
<td>69 bar (1000 PSI) 82 (78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1800 RPM</td>
<td></td>
<td>138 bar (2000 PSI) 82 (79)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>207 bar (3000 PSI) 85 (80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Input Power At 1800 RPM, Max. Displacement & 207 bar (3000 PSI) 71.2 kw (95.5 hp)</td>
</tr>
</tbody>
</table>

* Since many variables such as mounting, tank style, plant layout, etc., effect noise levels, it cannot be assumed that the above readings will be equal to those in the field. The above values are for guidance in selecting the proper pump. Noise levels are A-weighted; mean sound pressure levels at 1 meter from the pump, measured and recorded in accordance with applicable ISO and NFPA standards.
Variable Displacement Piston Pumps
Series PAVC100

Ordering Information

PAVC 100

- **Multiple Pumps**
- **Pump Axial Piston**
- **Variable Controllable**

Code
- **PAVC**
- **100**

Code
- **Outlet**
- **Port**
- **Location**
- **Type**
- **Omit**
- **Str. Thread**
- **Top**
- **SAE/Inch**
- **3**
- **Flange**
- **Top**
- **SAE/Inch**

Code
- **Outlet Location Type**
- **Omit**
- **Str. Thread Top SAE/Inch**
- **3**
- **Flange Top SAE/Inch**
- **8**
- **Flange Top/Bottom SAE/Inch Threads**
- **ISO 6149/Metric**

Code
- **Rotation**
- **R** Right (CW)
- **L** Left (CCW)

Code
- **Volume Stop Options**
- **Omit**
- **Volume Stop Plugged**
- **2**
- **Maximum Volume Stop**
- **5**
- **Max. Vol. Stop With O-Ring**

Code
- **Thru-Shaft Threads**
- **Omit**
- **No Thru-Shaft**
- **6**
- **UNC**
- **9**
- **Metric**

Code
- **Differential Options**
- **Omit**
- **Non-Adjustable Differential**
- **4**
- **Adjustable Differential**

Code
- **Thru-Shaft Variations**
- **Omit**
- **No Thru-Shaft Option**
- **A1** Thru-Shaft, SAE "AA" Pilot, 1/2" Keyed Shaft
- **A3** Thru-Shaft, SAE "AA" Pilot, 9 Tooth 20/40 Pitch Spline Shaft
- **A4** Thru-Shaft, SAE "A" Pilot, 9 Tooth 16/32 Pitch Spline Shaft
- **B1** Thru-Shaft, SAE "B" Pilot, 7/8" Keyed Shaft
- **B2** Thru-Shaft, SAE "B" Pilot, 1" Keyed Shaft
- **B3** Thru-Shaft, SAE "B" Pilot, 13 Tooth 16/32 Pitch Spline Shaft
- **B4** Thru-Shaft, SAE "B" Pilot, 15 Tooth 16/32 Pitch Spline Shaft
- **C2** Thru-Shaft, SAE "C" Pilot, 1-1/4" Keyed Shaft
- **C3** Thru-Shaft, SAE "C" Pilot, 14 Tooth 12/24 Pitch Spline Shaft

Ordering Notes

- Unless otherwise specified, pump is shipped at maximum GPM (1800 RPM) and set to 69 bar (1000 PSI) [See † Exceptions]. When factory settings are required, the items shown in Chart #1 must be included with order.

- Use SAE "C-C" shaft on thru-shaft pump variation when combined input torque of front and rear pumps exceed 565 Nm (5000 In-Lbs).
Typical Performance Data - Fluid: Standard Hydraulic Oil 100 SSU @ 49°C (120°F)

NOTE: The efficiencies and data in the graph are good only for pumps running at 1800 RPM and stroked to maximum. To calculate approximate input power for the other conditions, use the following formula:

\[
HP = \frac{Q \times (PSI)}{1714} + (CH_p)
\]

WHERE:
- \(Q \) = Actual Output Flow in GPM
- \(PSI \) = Pressure At Pump Outlet
- \(CH_p \) = Input Power @ Full Compensation @ 1800 RPM (from graph read at operating pressure)

Actual GPM is directly proportional to drive speed and maximum volume setting. Flow loss, however, is a function of pressure only.
Typical Performance Data -

Minimum Power Settings Attainable
With Control Options C, H, CM & HM

NOTE: Minimum attainable HP setting means that input power will not exceed the indicated setting at the indicated RPM and that the pump will achieve full compensator pressure selected. If setting input power limiter below full flow boundary, full flow may not be obtained at low operating pressure. Determine maximum input power limitation at desired RPM. All points above desired compensator setting curve can be achieved.

Power (Torque) Limiting Curves

See page 9 for “How to Read Curves” information.
Rear Ported Pump Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTE:
Pump shown and dimensioned is a clockwise rotation pump. For a counterclockwise rotation pump the outlet port, control drain, signal port and pump controls will be on other side.

<table>
<thead>
<tr>
<th>Outlet Option</th>
<th>Inlet Option</th>
<th>Outlet Port</th>
<th>Inlet Port</th>
<th>Control Drain</th>
<th>Signal Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit</td>
<td>Omit</td>
<td>SAE-20 Straight Thread (1-5/8-12UNC)</td>
<td>2" SAE 4-Bolt Flange 1/2-13UNC Threads Standard Pressure Series (Code 61)</td>
<td>SAE-6 Straight Thread (9/16-18UNF)</td>
<td>SAE-4 Straight Thread (7/16-20UNF)</td>
</tr>
<tr>
<td>3</td>
<td>Omit</td>
<td>1-1/4" SAE Flange 7/16-14UNC Thread Standard Pressure Series (Code 61)</td>
<td>2" SAE 4-Bolt Flange 1/2-13UNC Threads Standard Pressure Series (Code 61)</td>
<td>SAE-6 Straight Thread (9/16-18UNF)</td>
<td>SAE-4 Straight Thread (7/16-20UNF)</td>
</tr>
</tbody>
</table>

SHAFT OPTION “B”
SAE “C” SPLINE
14 TOOTH 12/24 DP
MAX. TORQUE = 639 N·m (5,680 IN-LBS)

SHAFT OPTION “C”
SAE “C-C” SHAFT
MAX. TORQUE = 1,218 N·m (10,780 IN-LBS)

SHAFT OPTION “D”
SAE “C-C” SPLINE
17 TOOTH 12/24 DP
MAX. TORQUE = 1,218 N·m (10,780 IN-LBS)
Rear Ported Pump Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTE:
Pump shown and dimensioned is a clockwise rotation pump. For a counterclockwise rotation pump the outlet port, control drain, signal port and pump controls will be on other side.
Top/Bottom Ported Pump Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTES:
1. Pump shown and dimensioned is a clockwise rotation top/bottom inlet option pump. For a counterclockwise rotation pump the outlet port, control drain, signal port, and pump controls will be on other side.
2. For other available shafts see page A34.
Top/Bottom Ported Pump Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTE:
Pump shown and dimensioned is a clockwise rotation pump. For a counterclockwise rotation pump the outlet port, control drain, signal port and pump controls will be on other side.

Port Location

<table>
<thead>
<tr>
<th>Outlet Option</th>
<th>Inlet Option</th>
<th>Outlet Port</th>
<th>Inlet Port</th>
<th>Control Drain</th>
<th>Signal Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit</td>
<td>2</td>
<td>SAE-20 Straight Thread (1-5/8-12UNC)</td>
<td>2" SAE 4-Bolt Flange 1/2-13UNC Threads Standard Pressure Series (Code 61)</td>
<td>SAE-6 Straight Thread (9/16-18UNF)</td>
<td>SAE-4 Straight Thread (7/16-20UNF)</td>
</tr>
<tr>
<td>8</td>
<td>ISO6149-20 Straight Thread (M42 x 2)</td>
<td>2" SAE 4-Bolt Flange M12 x 1.75 Threads Standard Pressure Series (Code 61)</td>
<td>ISO6149-5 Straight Thread (M14 x 1.5)</td>
<td>ISO6149-4 Straight Thread (M12 x 1.5)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1-1/4" SAE Flange 7/16-14UNC Thread Standard Pressure Series (Code 61)</td>
<td>2" SAE 4-Bolt Flange M12 x 1.75 Threads Standard Pressure Series (Code 61)</td>
<td>ISO6149-5 Straight Thread (M14 x 1.5)</td>
<td>ISO6149-4 Straight Thread (M12 x 1.5)</td>
</tr>
<tr>
<td>8</td>
<td>1-1/4" SAE Flange M10 x 1.5 Thread Standard Pressure Series (Code 61)</td>
<td>2" SAE 4-Bolt Flange M12 x 1.75 Threads Standard Pressure Series (Code 61)</td>
<td>ISO6149-5 Straight Thread (M14 x 1.5)</td>
<td>ISO6149-4 Straight Thread (M12 x 1.5)</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions – Thru-Shaft Options

* Inch equivalents for millimeter dimensions are shown in (**).

<table>
<thead>
<tr>
<th>Variation</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(E)</th>
<th>(F)</th>
<th>(G)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A1</td>
<td>12.70 (.500)</td>
<td>Ø 50.83/50.85 (2.001/2.002)</td>
<td>82.55 (3.250)</td>
<td>N/A</td>
<td>5/16-18UNC-2B</td>
<td>N/A</td>
<td>Ø 12.70 x 3.175 Key (.500 x .125)</td>
<td>N/A</td>
</tr>
<tr>
<td>6A3</td>
<td>12.70 (.500)</td>
<td>Ø 50.83/50.85 (2.001/2.002)</td>
<td>82.55 (3.250)</td>
<td>N/A</td>
<td>5/16-18UNC-2B</td>
<td>N/A</td>
<td>9 Tooth 20/40 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>6A4</td>
<td>—</td>
<td>Ø 82.58/82.60 (3.251/3.252)</td>
<td>106.38 (4.188)</td>
<td>N/A</td>
<td>3/8-16UNC-2B</td>
<td>N/A</td>
<td>9 Tooth 16/32 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>6B1</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>1/2-13UNC-2B</td>
<td>1/2-13UNC-2B</td>
<td>Ø 22.23 x 6.35 Key (.875 x .250)</td>
<td>✓</td>
</tr>
<tr>
<td>6B2</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>1/2-13UNC-2B</td>
<td>1/2-13UNC-2B</td>
<td>Ø 25.4 x 6.35 Key (1.000 x .250)</td>
<td>✓</td>
</tr>
<tr>
<td>6B3</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>1/2-13UNC-2B</td>
<td>1/2-13UNC-2B</td>
<td>13 Tooth 16/32 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>6B4</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>1/2-13UNC-2B</td>
<td>1/2-13UNC-2B</td>
<td>15 Tooth 16/32 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>6C2</td>
<td>53.98 (2.125)</td>
<td>Ø 127.03/127.05 (5.001/5.002)</td>
<td>180.98 (7.125)</td>
<td>114.50 (4.508)</td>
<td>5/8-11UNC-2B</td>
<td>1/2-13UNC-2B</td>
<td>Ø 31.75 x 7.92 Key (1.250 x .312)</td>
<td>82.55 (3.250)</td>
</tr>
<tr>
<td>6C3</td>
<td>53.98 (2.125)</td>
<td>Ø 127.03/127.05 (5.001/5.002)</td>
<td>180.98 (7.125)</td>
<td>114.50 (4.508)</td>
<td>5/8-11UNC-2B</td>
<td>1/2-13UNC-2B</td>
<td>14 Tooth 12/24 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>9A1</td>
<td>12.70 (.500)</td>
<td>Ø 50.83/50.85 (2.001/2.002)</td>
<td>82.55 (3.250)</td>
<td>N/A</td>
<td>M8 x 1.25</td>
<td>N/A</td>
<td>Ø 12.70 x 3.175 Key (.500 x .125)</td>
<td>N/A</td>
</tr>
<tr>
<td>9A3</td>
<td>12.70 (.500)</td>
<td>Ø 50.83/50.85 (2.001/2.002)</td>
<td>82.55 (3.250)</td>
<td>N/A</td>
<td>M8 x 1.25</td>
<td>N/A</td>
<td>9 Tooth 20/40 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>9A4</td>
<td>—</td>
<td>Ø 82.58/82.60 (3.251/3.252)</td>
<td>106.38 (4.188)</td>
<td>N/A</td>
<td>M10 x 1.50</td>
<td>N/A</td>
<td>9 Tooth 16/32 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>9B1</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>M12 x 1.75</td>
<td>M12 x 1.75</td>
<td>Ø 22.23 x 6.35 Key (.875 x .250)</td>
<td>✓</td>
</tr>
<tr>
<td>9B2</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>M12 x 1.75</td>
<td>M12 x 1.75</td>
<td>Ø 25.4 x 6.35 Key (1.000 x .250)</td>
<td>✓</td>
</tr>
<tr>
<td>9B3</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>M12 x 1.75</td>
<td>M12 x 1.75</td>
<td>13 Tooth 16/32 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>9B4</td>
<td>53.98 (2.125)</td>
<td>Ø 101.63/101.65 (4.001/4.002)</td>
<td>146.05 (5.750)</td>
<td>89.81 (3.536)</td>
<td>M12 x 1.75</td>
<td>M12 x 1.75</td>
<td>15 Tooth 16/32 Pitch</td>
<td>N/A</td>
</tr>
<tr>
<td>9C2</td>
<td>53.98 (2.125)</td>
<td>Ø 127.03/127.05 (5.001/5.002)</td>
<td>180.98 (7.125)</td>
<td>114.50 (4.508)</td>
<td>M16 x 2</td>
<td>M12 x 1.75</td>
<td>Ø 31.75 x 7.92 Key (1.250 x .312)</td>
<td>82.55 (3.250)</td>
</tr>
<tr>
<td>9C3</td>
<td>53.98 (2.125)</td>
<td>Ø 127.03/127.05 (5.001/5.002)</td>
<td>180.98 (7.125)</td>
<td>114.50 (4.508)</td>
<td>M16 x 2</td>
<td>M12 x 1.75</td>
<td>14 Tooth 12/24 Pitch</td>
<td>N/A</td>
</tr>
</tbody>
</table>

⚠️ 88.90 (3.500) for pumps with shaft lengths between 53.34 (2.10) and 58.67 (2.31) inches.
76.20 (3.000) for pumps with shaft lengths between 40.64 (1.60) and 45.72 (1.80) inches.
Thru-Shaft Options – Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTES:
1. Rear adapters may be rotated 90°.
2. Pump shown is a clockwise rotation pump. For a counterclockwise pump the outlet port, control drain and control adjustments will be on opposite side.
3. Maximum torque transmitting capacity for rear mounting of pumps is 639 N•m (5,680 In. Lbs). Lower allowables may apply based on pump mounted on rear.
Electrohydraulic Pump Dimensions

* Inch equivalents for millimeter dimensions are shown in (**).

NOTE: Reference “Electrohydraulic Accessories” Catalog 2600-400-1 for more complete information.

NOTES:

1. Consult factory for information relative to pump option selection and additional components required for desired pump function.
2. For electrohydraulic flow and pressure control of one or two pumps, make electrical connections per Figure IV. When one pump is used, omit connections to pump #2 feedback.
3. For electrohydraulic flow only, eliminate pressure command signal and place jumper between “Press CMD” and “+10V” terminals (compensating pressure will be controlled by maximum setting on pump or remote compensator if used).
4. For electrohydraulic pressure only, eliminate volume command signal and place jumper between “VOL CMD” and “+10V” terminals or use 801179 pressure driver card.
5. Figures I thru III show nominal input vs. output relationships. The actual values will vary with component tolerances. Full volume range will be realized with 0 to 7 volts. Full pressure range will be realized with 0 to 7 volts, or 0-500MA.
6. Pump shown is a clockwise rotation. For a counterclockwise rotation LVDT feedback is on opposite side.
7. For further detail on installation of AP11/AP211, refer to the latest edition of Catalog 2600-400-x/US.

Accessories for S & SE Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC Valve 2500 PSI</td>
<td>694586</td>
</tr>
<tr>
<td>PPC Valve 3000 PSI</td>
<td>786645</td>
</tr>
<tr>
<td>Amp Single Pump</td>
<td>AP11</td>
</tr>
<tr>
<td>Amp Double Pump</td>
<td>AP211</td>
</tr>
<tr>
<td>Seq. Valve [227 LPM (40 GPM) Max.]</td>
<td>SX6PM8, SX6MM8 (Inline) (Manifold)</td>
</tr>
<tr>
<td>Seq. Valve [340 LPM (90 GPM) Max.]</td>
<td>SX10PM8, SX10MM8 (Inline) (Manifold)</td>
</tr>
<tr>
<td>Electrohydraulic Cable [Pump to Amp]</td>
<td>EHC*4YB</td>
</tr>
<tr>
<td>Electrohydraulic Cable [PPC to Amp]</td>
<td>EHC*2AB</td>
</tr>
</tbody>
</table>

* = Length in Feet

Typical hookup for infinitely variable electrohydraulic pressure & volume control.

Fig. IV

Fig. I
Nominal output flow vs. input command voltage when used in conjunction with AP*11 amplifier and 786645 proportional pressure controller.

Fig. II
Nominal output pressure vs. input command voltage when used in conjunction with AP*11 amplifier and 786645 proportional pressure controller.

Fig. III
Nominal input current vs. pressure when used in conjunction with a current source and 786645 proportional pressure controller.
Generic Pump Assembly

1. TRUNNION CAP ASSEMBLY
 - Thrust Washer (Not on PAVC100)
 - Snap Ring
 - O-Ring
 - Trunnion Cap
 - Roller Bearing

2. SLEEVE ASSEMBLY
 - Sleeve
 - O-Ring 1
 - Back-Up Ring 2

3. PLUG ASSEMBLY
 - Sleeve
 - O-Ring 1
 - Back-Up Ring 2

4. RETAINER DETAIL

5. BEARING SHAFT ASSEMBLY

6. PISTON - DIFFERENTIAL CONTROL
 - Piston Body
 - O-Ring 1
 - Back-Up Ring 2

7. AIR BLEED ASSEMBLY
 - Body
 - Spring
 - Stake Ball in Place

8. ADJUSTING STEM ASSEMBLY
 - Plug
 - Stem
 - O-Ring 1
 - Back-Up Ring 2

9. PORT PLATE
 - Left Hand (CCW) Port Plate Shown in Assembly (Above).
 - Right Hand (CW) Port Plate Shown Below.
Installation Information

Variable Displacement Piston Pumps

Series PAVC 33/38/65/100

Part Number Description

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>102 x 1</td>
<td>Solid Pipe Plug (1/16")</td>
</tr>
<tr>
<td>108 x 4</td>
<td>SAE Plug - 4</td>
</tr>
<tr>
<td>690870</td>
<td>.028 Orifice Plug (1/16")</td>
</tr>
<tr>
<td>800599</td>
<td>.034 Orifice Plug (1/16")</td>
</tr>
<tr>
<td>786635</td>
<td>.034 Orifice Fitting</td>
</tr>
<tr>
<td>787474</td>
<td>Upstroke Spring</td>
</tr>
</tbody>
</table>

PAVC 33, 38, 65

<table>
<thead>
<tr>
<th>Control Option</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
<th>Position 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit</td>
<td>Open</td>
<td>800599</td>
<td>108 x 4</td>
<td>108 x 4</td>
<td>Omit</td>
</tr>
<tr>
<td>A</td>
<td>102 x 1</td>
<td>800599</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474*</td>
</tr>
<tr>
<td>C</td>
<td>102 x 1</td>
<td>800599</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474*</td>
</tr>
<tr>
<td>H</td>
<td>Open</td>
<td>800599</td>
<td>108 x 4</td>
<td>108 x 4</td>
<td>Omit</td>
</tr>
<tr>
<td>M</td>
<td>800599</td>
<td>Open</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474*</td>
</tr>
<tr>
<td>ME</td>
<td>102 x 1</td>
<td>800599</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474*</td>
</tr>
<tr>
<td>S</td>
<td>800599</td>
<td>Open</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474*</td>
</tr>
<tr>
<td>SE</td>
<td>102 x 1</td>
<td>800599</td>
<td>Open</td>
<td>108 x 4</td>
<td>Omit</td>
</tr>
<tr>
<td>AM</td>
<td>102 x 1</td>
<td>800599</td>
<td>786635</td>
<td>Open</td>
<td>787474*</td>
</tr>
<tr>
<td>CM</td>
<td>102 x 1</td>
<td>800599</td>
<td>786635</td>
<td>Open</td>
<td>787474*</td>
</tr>
<tr>
<td>HM</td>
<td>800599</td>
<td>Open</td>
<td>Open</td>
<td>108 x 4</td>
<td>Omit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Available Only on PAVC65.

PAVC100

<table>
<thead>
<tr>
<th>Control Option</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
<th>Position 4</th>
<th>Position 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit</td>
<td>Open</td>
<td>690870</td>
<td>108 x 4</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>A</td>
<td>102 x 1</td>
<td>690870</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>C</td>
<td>102 x 1</td>
<td>690870</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>H</td>
<td>Open</td>
<td>690870</td>
<td>108 x 4</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>M</td>
<td>690870</td>
<td>Open</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>ME</td>
<td>102 x 1</td>
<td>690870</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>S</td>
<td>690870</td>
<td>Open</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>SE</td>
<td>102 x 1</td>
<td>690870</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td>AM</td>
<td>102 x 1</td>
<td>690870</td>
<td>786635</td>
<td>Open</td>
<td>787474</td>
</tr>
<tr>
<td>CM</td>
<td>102 x 1</td>
<td>690870</td>
<td>786635</td>
<td>Open</td>
<td>787474</td>
</tr>
<tr>
<td>HM</td>
<td>690870</td>
<td>Open</td>
<td>Open</td>
<td>108 x 4</td>
<td>787474</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‡ 787474 is always included with the PAVC100.

PARKER HANNIFIN CORPORATION

Hydraulic Pump Division
Marysville, Ohio USA

NOTES:

10. TORQUE (HP) CONTROL (See next page)

11. VOLUME SERVO FEEDBACK (See next page)
10) CONTROL OPTION “C” & “H”
PRESSURE, POWER & FLOW

11) CONTROL OPTION “S” & “SE”
SERVO VOLUME FEEDBACK

NOTE: Install ball through torque port, seat in place through bolt hole.

SERVO VOLUME ASSEMBLY
Additional PAVC Options

Consult factory for more information.
Non-Standard Shaft and Pilot Options - PAVC65

SAE "B" PILOT
SAE "B" SPLINE SHAFT
(SINGLE PIECE SHAFT)

SAE "B" PILOT
SAE "BB" SPLINE SHAFT
(SINGLE PIECE SHAFT)

SAE "C" PILOT
SAE "B" SPLINE SHAFT
(DUAL BEARING SHAFT)

Non-Standard Shaft and Pilot Option - PAVC100

SAE "C" PILOT
SAE "D" SPLINE SHAFT
(SINGLE PIECE SHAFT)
OR
(DUAL BEARING SHAFT)
Harsh Environment Seal Option

PAVC65 - Harsh Environment-Shaft and Pilot Configurations

Parker Hannifin Corporation
Hydraulic Pump Division
Marysville, Ohio USA

PAVC100 - Harsh Environment-Shaft and Pilot Configurations
Sculptured Housings - PAVC65

NOTE:
There are many sculptured housings and special porting configurations for applications where the standard PAVC has interference. Consult factory.

Special (Dual) Inlet - PAVC65
Top Port: 1-1/2" SAE Flange
Rear Port: SAE-24 O-Ring

NOTE:
Dual inlet recommended in applications where pump operating speed exceeds 2700 RPM without inlet precharge pressure.

Special (Top) Inlet - PAVC65
Top Port: SAE-24 O-Ring
Transmission Spacer
SAE "B" Pilot

NOTE: Spacer mounts on pilot of pump in order to move the pump away from transmission when there is an interference problem. Consult factory.

Speed Pickup
PAVC 33, 38, 65
NOTE: PAVC65 Shown

NOTE: The speed pick-up option is a provision for a speed sensor to read off the flutes on the barrel. Consult factory.

Pump Enable
NOTE: The pump enable option allows the pump to go lower than catalog low-press. standby setting. Consult factory.

PAVC65
AVAILABLE WITH ENABLE SOLENOID BOLTED TO PUMP

PAVC33/38
EXTERNAL CONTROL ONLY
SPECIAL MODIFIED HOUSING
CONTROL DRAIN REF.
ENABLE PORT 7/16-20 UNF-2B ST.THR'D O-RING

PAVC100
EXTERNAL CONTROL ONLY
STANDARD HOUSING
CONTROL DRAIN REF.
ENABLE PORT 7/16-20 UNF-2B ST.THR'D O-RING
Use Of A Relief Valve
The use of a relief valve, while not mandatory is recommended in the main circuit to suppress hydraulic shock loads and additional system protection. If a minimum volume stop is used, the use of a relief valve is mandatory.

Fluid Recommendations
Premium quality hydraulic oil with a viscosity range between 150-250 SSU (30-50 cst.) at 38°C (100°F). Normal operating viscosity range between 80-1000 SSU (17-180 cst.). Maximum start-up viscosity is 4000 SSU (1000 cst.).
NOTE: Consult Parker when exceeding 71°C (160°F) operation. Oil should have maximum anti-wear properties, rust and oxidation treatment.

Filtration
For maximum pump and system component life, the system should be protected from contamination at a level not to exceed 125 particles greater than 10 microns per milliliter of fluid. (SAE Class 4/ISO 16/13). Due to the nature of variable displacement pumps, variations in pump inlet conditions, fluid acceleration losses, system aeration, and duty cycle we do not recommend suction line filters. We do recommend the use of a properly sized, in-tank suction strainer. Contact your Parker representative for assistance.

Start-Up
On initial start-up, the case should be filled with oil, pressure should be reduced and the circuit should be open or the air bled from the pump outlet to permit priming. Use of the airbleed is recommended on initial start-up. See Installation and Mounting Section to connect airbleed.

Inlet Conditions
Not to exceed .17 bar (5 In. Hg.). Vacuum at 1800 RPM on petroleum base fluids. See recommended speed spectrum for specific inlet conditions.

Shaft Rotation and Line Up
Pump and motor shaft alignment must be within .010 TIR maximum, using a standard floating coupling. Please follow coupling manufacturer's recommended installation instructions to prevent end thrust on pump shaft. Turn pump to assure freedom of rotation. Pump and motor must be on a rigid base.

The coupling should be sized to absorb the peak horsepower developed.

Installation and Mounting
When a PAVC Series Pump is mounted above the fluid level, the position of the “control drain” is not restricted but the inlet port should not be on the bottom (PAVC100). When a PAVC Series Pump is mounted below the fluid level the position of all ports are not restricted. The “control drain” should be a separate line to the reservoir and extend below the oil level as far from the inlet line as possible. The “control drain” line can be filtered and/or cooled (must not exceed 7 bar (100 PSI) back pressure). Suggested maximum line length is 10 feet.

A built in airbleed is standard on all PAVC 33, 38, 65 and 100 Pumps. To connect, remove airbleed drain plug and connect a line unrestricted to reservoir extending below minimum oil level. Back pressure in this line must not exceed .28 bar (4 PSI).

Special Installations
Consult your Parker representative for any application requiring the following:
Pressure above rated, drive speed above maximum, indirect drive, fluid other than petroleum oil, oil temperature above 71°C (160°F).

Inlet Pressure
Not to exceed 1.72 bar (25 PSI).